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The classical Young test says that if I is a 2n-periodic function of bounded
variation on [ - n, n], then the conjugate series to the Fourier series ofI converges
at x if and only if the conjugate function I exists at x, Our main goal is to give
estimates of the rate of this convergence in terms of the oscillation of l/!,lt):=
Ilx + t) - f(x - t) over appropriate subintervals, In particular, we obtain a con­
jugate version of the well-known Dini-Lipschitz test. As a byproduct, we obtain the
rate of convergence in L I-norm, ,(. 1995 Academic Press. Inc.

I. INTRODUCTION

In this paper, we consider only 2n-periodic functions. Let f be integrable
in Lebesgue's sense on [ - n, n]. If

(an cos nx + bll sin nx) (1.1 )

is the Fourier senes ofI, then the conjugate series to (1.1) is given by

I (an sin nx - bll cos nx).
11=1

(1.2 )

Denote by .~Jf, x) the nth partial sum of series (1.2). As it is well known,
we have

I I" -.'fll(f, x) = -- ljJ)t) DII(t) dt,
n 0

n ~ I, (1.3 )
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where

and
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t/J)t) := f(x + t) - f(x - t)

(1.4 )
~. cos t/2 - cos(n + 1/2) ti5,,( t) := L.. sm k t = ---'--------'---
k~1 2sint/2

is the conjugate Dirichlet kernel.
The following test for the convergence of (1.2) was given by Young [5].

(See also [6, p. 59].)

THEOREM O. If f is of bounded variation on [- n, n], then a necessary
and sufficient condition for the convergence of (1.2) at a point x is the
existence of the integral

- l' f- l' -1 J" t/J)t) df(x):= 1m (x, h):= 1m - t,
II - 0 + II - 0 + n II 2 tan t/2

(1.5)

which represents then the sum of ( 1.2).

The function] is said to be conjugate to f If f is of bounded variation
on [-n, n] and]exists at x, then t/J)t) is necessarily continuous at t=O.

Our main object is to obtain estimates of the rate of convergence stated
in Theorem O.

2. MAIN RESULTS

We will use the notations

where

We remind the reader that the oscillation of a bounded function f over an
interval I is defined by

osc(j, I) := sup{ If(x) - f( y)1 : x, y E I}.

We will prove the following

THEOREM 1. If f is bounded, then

n ~ 1. (2.1)

Hence Theorem 0 follows easily.
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We introduce one more notation:
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k= I, 2, ....

THEOREM 2. If f is bounded and such that

·crc I
L k osc(l/tx,Jd < 00,
k~l

then 1exists at x and

(2.2)

In the following, we specialize Theorems I and 2 to the particular cases
where f is assumed to be (i) continuous or (ii) of bounded variation on
[ -n, n].

We remind the reader that the modulus of continuity w(f) of a
2n-periodic function f is defined by

oAf, 15) :=sup{lf(x)-f(y)l: Ix-yl ~J; x,yER}

Now, Theorem I implies the following

COROLLARY 1. Iff is continuous on [-n, 1l'], then we have, uniformly
in x,

IS/l(f, x) -1(x, ~)I ~ Cw ~~) In(n + I), (2.4 )

Here and in the following, by C we denote a positive constant, not
necessarily the same at each occurrence. In general, C may depend on f,
but bot on n.

Theorem 2 implies the following result, which is folklore.

COROLLARY 2. If f is continuous on [ -n, 1l'] and such that

(2.5 )
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then J exists for all x and we have, uniformly in x,

I,~,,(f; x) -J(x)1 ~ Cw (1;~) In(n + I)

n~1. (2.6)

The uniform estimates (2.4) and (2.6) may be considered to be the con­
jugate versions of the well-known Dini~Lipschitz test. (See, e.g., [6, p. 63].)

It is plain that (2.5) is a sufficient condition for the uniform convergence
of series (1.2) to the conjugate function I It is easy to see that it is
equivalent to the condition

f"W(f,J) ,
--- d(j < CJJ.

o J

Now, condition (2.5) is the best possible in the following sense. Let w(J)

be a concave modulus of continuity such that

According to [4, Lemma 4], for the function

we have

By definition, the conjugate series is

,'X [ (7r) k-I (7r )l -
- k~2 W k -~ w k _ 1 Jcos kx =:.f( x).

Hence

/I l (7T.) k - I (7T. )1.~) j; 0) = - k~2 W k - ~k- w k - 1

/1- I 1 (7T.) (7T.)=w(7T.)- L ~-w - -w -
k~lk+1 k n

(2.7)
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diverges as n ---+ (f). Likewise, the conjugate function l(x) does not exist at
x=O.

Finally, we prove the following.

THEOREM 3. Iff is of bounded variation on [ - n, n J, then

IS,,(f, x) -1(x, ~)I ~ 9 (I +~) ~ k~l var(~x, Jk ), n ~ I, (2.8)

where var(~, J) denotes the total variation of the fimction ~ over the
interval J.

We note that inequality (2.8) was proved by Mazhar and AI-Budaiwi
[3 J with a smaller constant. The corresponding quantitative version of the
classical Dirichlet-Jordan test (see, e.g., [6, p. 57J) was proved by Bojanic
[ 1]. (See also [2].)

3. AUXILIARY RESULTS

LEMMA 1 (See [3 J). We have

\J
"cos(n+ I/2)t d I n
x 2 sin t/2 t ~ (n + 1/2) x'

O<x~n, n ~O.

LEMMA 2. If ~ is of bounded variation on [0, n J, then

(3.1 )

Proof By definition,

Hence

" 1 1
k~1 k osc(~, I k ,,) ~~ var(~, [0, nJ)

,,- I 1
+k~l k(k+ 1) var(~, [0, Ok"J)· (3.2)

Define the nonnegative integer m so 2'" < n ~ 2'" + 1. By making use of
dyadic grouping, we get the following upper estimate:



212 F. M6RICZ

Using dyadic grouping again, we can estimate from below the sum on
the right-hand side of (3.1) as follows:

1" (r nl ) 1 { m
~k~lvar t/J, O'kJ ~2m+l var(t/J,[O,nJ)+i~121

m 1 (r nl)~J~02m-J+2var t/J, O'2JJ .

Combining (3.2)-(3.4) yields

(3.4 )

This proves (3.1).

We note that in the case n = 2m with some nonnegative integer m, the
above proof provides a smaller constant, namely 5 instead of 9.

4. PROOFS

Proof of Theorem 1. By (1.3 H 1.5),

s,,(f, x)-l(x,n
1 In/II - 1 In cos(n+ 1/2) t

= - - t/J x(t) D ,,(t) dt +- . t/J,( t) J' /J dt
non ni" _ sIn t ~
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1 ttin - 1 " f
=--f t/JAt) D,,(t) dt+- I [t/JAt)-t/JA8k -I.")]
nonk ~2 lkn

cos(n + 1/2) t d
x. t

2 Sill t/2

I " f cos(n+ 1/2) t
+- L t/JA8 k - 1.,,) 2· /2 dt=:A"+B,,+C,,,

n k=2 fk" sIn t

213

(4.1 )

we have

ID,,(t)1 ~n and t/JAO) =0,

Making use of the obvious estimate

(4.2)

,cos( n + 1/2) t I,<~
2 sin t/2 '" 2t'

we find

0< t ~ 7t,

Setting

I " f nIB"I ~- L osc(t/J" I k ,,) -2 dt
n k=2 fk" t

" I
~ I k OSC(t/Jx'/k")·

k=2

(4.3 )

by Lemma I,

640/81/2·5

._ ftt cos(n + 1/2) t
Rk".- . dt,

Ok" 2 Sill t/2
k= 1,2, ... , n,

R",,=O.
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By summation by parts,
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whence

(4.4)

Combining (4.1 H 4.4) gives (2.1 ).

Proof of Theorem 2. If

n n
--<h~- n~1,
n + 1 n'

then

1

- -( n)1 1 In/II IljJx(t)1f(x,h)-f x,-- ~- dt
. n + 1 n n/{" + II 2 tan tl2

1
~-osc(ljJ\, J,,).

nn

Analogously, for such h we have

+ f 17(x, ~) -7(x, ~)I
k~lI+ I +

IX I
~ - L k- osc(ljJ" J k )·n r

k =J/

In particular, this is true when h := nln.
Now, Theorem 2 follows from Theorem 1 and (2.2).

Proof of Theorem 3. Inequality (2.8) is an immediate consequence of
Theorem 1 and Lemma 2.
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5. COVERGENCE IN L I-NoRM
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Imitating the proofs of Theorems 1 and 2, we may obtain the following
quantitative versions of the Young test in L I-norm.

THEOREM 1*. IfI is integrable on [ -rc, rc], then

n~ 1,

where

Q(IjJ, I) :=sup {f" IIjJAt)-IjJAt')1 dx: t, t' EI}.

THEOREM 2*. III is integrable on [ - rc, rc] and such that

ex: 1
k~1 k Q(IjJ, Jd < 00,

then J is also Lebesgue integable and

" _ (1) 11 1
L"ISIl(f,X)-/(x)ldx< 1+~ k~,kQ(IjJ,Ikll)

locI
+~LkQ(IjJ,Jd, n~1.

k=lI

It is plain that

Q(IjJ, lkll) <2w I (f, ~),

where

w\(f, 15) := sup {f:" I/(x + t) - I(x)i dx: ItI<J}
is the integral modulus of continuity off

Now, the conjugate versions of the Dini-Lipschitz test in L I-norm reads
as follows.

COROLLARY 1*. IfI is integrable on [ - rc, rc], then

f" ISIl(f, x) - J(x,~) I dx <Cw, (f,~) In(n + 1), n ~ 1.
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COROLLARY 2*. If f is integrable on [ -71, 71] and such that

'x 1 (71)
k~J;WI f, k < oc,

then 1 is also Lebesgue integrable and

r" I·s)f, x) -1(x)1 dx,,; CW 1 (f, ~) In(n + 1)

1 ,.< 1 ( 71)
+~ k~/I k W L f, k '

Clearly, (5.1) is equivalent to the condition

f"wdf, <5) d'.\":
o <5 u < oc.

n;, 1.

(5.1 )

Problem. Is condition (5.1) the best possible in the following sense:
Given a concave modulus of continuity w(<5) such that condition (2.7) is
satisfied, does there exist an integrable function f such that

but 1is not Lebesgue integrable, or at least, the conjugate series (1.2) does
not converge to I in the L-norm?
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