A Quantitative Version of the Young Test for the Convergence of Conjugate Series

F. Móricz*
Bolyai Institute, University of Szeged, Aradi vértanuik tere 1, 6720 Szeged, Hungary

Communicated by D. Lubinsky
Received June 1, 1993; accepted in revised form April 4, 1994

Abstract

The classical Young test says that if f is a 2π-periodic function of bounded variation on $[-\pi, \pi]$, then the conjugate series to the Fourier series of f converges at x if and only if the conjugate function f exists at x. Our main goal is to give estimates of the rate of this convergence in terms of the oscillation of $\psi_{x}(t):=$ $f(x+t)-f(x-t)$ over appropriate subintervals. In particular, we obtain a conjugate version of the well-known Dini-Lipschitz test. As a byproduct, we obtain the rate of convergence in L^{1}-norm. 1995 Academic Press. Inc.

1. Introduction

In this paper, we consider only 2π-periodic functions. Let f be integrable in Lebesgue's sense on $[-\pi, \pi]$. If

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

is the Fourier series of f, then the conjugate series to (1.1) is given by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \sin n x-b_{n} \cos n x\right) . \tag{1.2}
\end{equation*}
$$

Denote by $\tilde{s}_{n}(f, x)$ the nth partial sum of series (1.2). As it is well known, we have

$$
\begin{equation*}
\tilde{s}_{n}(f, x)=-\frac{1}{\pi} \int_{0}^{\pi} \psi_{x}(t) \tilde{D}_{n}(t) d t, \quad n \geqslant 1 \tag{1.3}
\end{equation*}
$$

[^0]where
$$
\psi_{x}(t):=f(x+t)-f(x-t)
$$
and
\[

$$
\begin{equation*}
\tilde{D}_{n}(t):=\sum_{k=1}^{n} \sin k t=\frac{\cos t / 2-\cos (n+1 / 2) t}{2 \sin t / 2} \tag{1.4}
\end{equation*}
$$

\]

is the conjugate Dirichlet kernel.
The following test for the convergence of (1.2) was given by Young [5]. (See also [6, p. 59].)

Theorem 0. If f is of bounded variation on $[-\pi, \pi]$, then a necessary and sufficient condition for the convergence of (1.2) at a point x is the existence of the integral

$$
\begin{equation*}
\tilde{f}(x):=\lim _{h \rightarrow 0+} \tilde{f}(x, h):=\lim _{h \rightarrow 0+} \frac{-1}{\pi} \int_{h}^{\pi} \frac{\psi_{x}(t)}{2 \tan t / 2} d t \tag{1.5}
\end{equation*}
$$

which represents then the sum of (1.2).
The function \tilde{f} is said to be conjugate to f. If f is of bounded variation on $[-\pi, \pi]$ and \tilde{f} exists at x, then $\psi_{x}(t)$ is necessarily continuous at $t=0$.

Our main object is to obtain estimates of the rate of convergence stated in Theorem 0 .

2. Main Results

We will use the notations

$$
I_{k n}:=\left[\theta_{k-1, n}, \theta_{k n}\right], \quad \text { where } \quad \theta_{k n}:=\frac{k \pi}{n}, \quad k=0,1, \ldots, n ; \quad n \geqslant 1
$$

We remind the reader that the oscillation of a bounded function f over an interval I is defined by

$$
\operatorname{osc}(f, I):=\sup \{|f(x)-f(y)|: x, y \in I\}
$$

We will prove the following
Theorem 1. If f is bounded, then

$$
\begin{equation*}
\left|\tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right)\right| \leqslant\left(1+\frac{1}{\pi}\right) \sum_{k=1}^{n} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, I_{k n}\right), \quad n \geqslant 1 \tag{2.1}
\end{equation*}
$$

Hence Theorem 0 follows easily.

We introduce one more notation:

$$
J_{k}:=\left[0, \frac{\pi}{k}\right], \quad k=1,2, \ldots
$$

Theorem 2. If f is bounded and such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, J_{k}\right)<\infty \tag{2.2}
\end{equation*}
$$

then \tilde{f} exists at x and

$$
\begin{align*}
\left|\tilde{s}_{n}(f, x)-\tilde{f}(x)\right| \leqslant & \left(1+\frac{1}{\pi}\right) \sum_{k=1}^{n} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, I_{k n}\right) \\
& +\frac{1}{\pi} \sum_{k=n}^{\infty} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, J_{k}\right), \quad n \geqslant 1 . \tag{2.3}
\end{align*}
$$

In the following, we specialize Theorems 1 and 2 to the particular cases where f is assumed to be (i) continuous or (ii) of bounded variation on $[-\pi, \pi]$.

We remind the reader that the modulus of continuity $\omega(f)$ of a 2π-periodic function f is defined by

$$
\omega(f, \delta):=\sup \{|f(x)-f(y)|:|x-y| \leqslant \delta ; x, y \in \mathbf{R}\}
$$

Now, Theorem 1 implies the following
Corollary 1. If f is continuous on $[-\pi, \pi]$, then we have, uniformly in x,

$$
\begin{equation*}
\left|\tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right)\right| \leqslant C \omega\left(f, \frac{\pi}{n}\right) \ln (n+1), \quad n \geqslant 1 \tag{2.4}
\end{equation*}
$$

Here and in the following, by C we denote a positive constant, not necessarily the same at each occurrence. In general, C may depend on f, but bot on n.

Theorem 2 implies the following result, which is folklore.

Corollary 2. If f is continuous on $[-\pi, \pi]$ and such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \omega\left(f, \frac{\pi}{k}\right)<\infty \tag{2.5}
\end{equation*}
$$

then \tilde{f} exists for all x and we have, uniformly in x,

$$
\begin{align*}
\left|\tilde{s}_{n}(f, x)-\tilde{f}(x)\right| \leqslant & C \omega\left(f, \frac{\pi}{n}\right) \ln (n+1) \\
& +\frac{1}{\pi} \sum_{k=n}^{\infty} \frac{1}{k} \omega\left(f, \frac{\pi}{k}\right), \quad n \geqslant 1 \tag{2.6}
\end{align*}
$$

The uniform estimates (2.4) and (2.6) may be considered to be the conjugate versions of the well-known Dini-Lipschitz test. (See, e.g., [6, p. 63].)

It is plain that (2.5) is a sufficient condition for the uniform convergence of series (1.2) to the conjugate function \bar{f}. It is easy to see that it is equivalent to the condition

$$
\int_{0}^{\pi} \frac{\omega(f, \delta)}{\delta} d \delta<\infty
$$

Now, condition (2.5) is the best possible in the following sense. Let $\omega(\delta)$ be a concave modulus of continuity such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \omega\left(\frac{\pi}{k}\right)=\infty \tag{2.7}
\end{equation*}
$$

According to [4, Lemma 4], for the function

$$
f(x):=\sum_{k=2}^{\infty}\left[\omega\left(\frac{\pi}{k}\right)-\frac{k-1}{k} \omega\left(\frac{\pi}{k-1}\right)\right] \sin k x
$$

we have

$$
\omega(f, \delta) \leqslant C \omega(\delta), \quad \delta \geqslant 0
$$

By definition, the conjugate series is

$$
-\sum_{k=2}^{\infty}\left[\omega\left(\frac{\pi}{k}\right)-\frac{k-1}{k} \omega\left(\frac{\pi}{k-1}\right)\right] \cos k x=: \tilde{f}(x)
$$

Hence

$$
\begin{aligned}
\tilde{s}_{n}(f, 0) & =-\sum_{k=2}^{n}\left[\omega\left(\frac{\pi}{k}\right)-\frac{k-1}{k} \omega\left(\frac{\pi}{k-1}\right)\right] \\
& =\omega(\pi)-\sum_{k=1}^{n-1} \frac{1}{k+1} \omega\left(\frac{\pi}{k}\right)-\omega\left(\frac{\pi}{n}\right)
\end{aligned}
$$

diverges as $n \rightarrow \infty$. Likewise, the conjugate function $\tilde{f}(x)$ does not exist at $x=0$.

Finally, we prove the following.
Theorem 3. If f is of bounded variation on $[-\pi, \pi]$, then

$$
\begin{equation*}
\left|\tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right)\right| \leqslant 9\left(1+\frac{1}{\pi}\right) \frac{1}{n} \sum_{k=1}^{n} \operatorname{var}\left(\psi_{x}, J_{k}\right), \quad n \geqslant 1 \tag{2.8}
\end{equation*}
$$

where $\operatorname{var}(\psi, J)$ denotes the total variation of the function ψ over the interval J.

We note that inequality (2.8) was proved by Mazhar and Al-Budaiwi [3] with a smaller constant. The corresponding quantitative version of the classical Dirichlet-Jordan test (see, e.g., [6, p. 57]) was proved by Bojanic [1]. (See also [2].)

3. Auxiliary Results

Lemma 1 (See [3]). We have

$$
\left|\int_{x}^{\pi} \frac{\cos (n+1 / 2) t}{2 \sin t / 2} d t\right| \leqslant \frac{\pi}{(n+1 / 2) x}, \quad 0<x \leqslant \pi, \quad n \geqslant 0
$$

Lemma 2. If ψ is of bounded variation on $[0, \pi]$, then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k} \operatorname{osc}\left(\psi, I_{k n}\right) \leqslant \frac{9}{n} \sum_{k=1}^{n} \operatorname{var}\left(\psi, J_{k}\right), \quad n \geqslant 2 \tag{3.1}
\end{equation*}
$$

Proof. By definition,

$$
\operatorname{osc}\left(\psi, I_{k n}\right) \leqslant \operatorname{var}\left(\psi,\left[0, \theta_{k n}\right]\right)-\operatorname{var}\left(\psi,\left[0, \theta_{k-1, n}\right]\right)
$$

Hence

$$
\begin{align*}
\sum_{k=1}^{n} \frac{1}{k} \operatorname{osc}\left(\psi, I_{k n}\right) \leqslant & \frac{1}{n} \operatorname{var}(\psi,[0, \pi]) \\
& +\sum_{k=1}^{n-1} \frac{1}{k(k+1)} \operatorname{var}\left(\psi,\left[0, \theta_{k n}\right]\right) \tag{3.2}
\end{align*}
$$

Define the nonnegative integer m so $2^{m}<n \leqslant 2^{m+1}$. By making use of dyadic grouping, we get the following upper estimate:

$$
\begin{align*}
\sum_{k=1}^{n-1} & \frac{1}{k(k+1)} \operatorname{var}\left(\psi,\left[0, \frac{k \pi}{n}\right]\right) \\
& \leqslant \frac{1}{2} \operatorname{var}\left(\psi,\left[0, \frac{\pi}{2^{m}}\right]\right) \\
& +\sum_{j=1}^{m-1}\left(\sum_{k=2^{m-1-1}+1}^{2^{m-1}} \frac{1}{k(k+1)}\right) \operatorname{var}\left(\psi,\left[0, \frac{\pi}{2^{j}}\right]\right) \\
& +\left(\sum_{k=2^{m-1}+1}^{n-1} \frac{1}{k(k+1)}\right) \operatorname{var}(\psi,[0, \pi]) \\
& \leqslant \sum_{j=0}^{m} \frac{1}{2^{m-j-1}} \operatorname{var}\left(\psi,\left[0, \frac{\pi}{2^{j}}\right]\right) \tag{3.3}
\end{align*}
$$

Using dyadic grouping again, we can estimate from below the sum on the right-hand side of (3.1) as follows:

$$
\begin{align*}
\frac{1}{n} \sum_{k=1}^{n} \operatorname{var}\left(\psi,\left[0, \frac{\pi}{k}\right]\right) & \geqslant \frac{1}{2^{n+1}}\left\{\operatorname{var}(\psi,[0, \pi])+\sum_{j=1}^{m} 2^{j-1} \operatorname{var}\left(\psi,\left[0, \frac{\pi}{2^{j}}\right]\right)\right\} \\
& \geqslant \sum_{j=0}^{m} \frac{1}{2^{m-j+2}} \operatorname{var}\left(\psi,\left[0, \frac{\pi}{2^{j}}\right]\right) \tag{3.4}
\end{align*}
$$

Combining (3.2)-(3.4) yields

$$
\sum_{k=1}^{n} \frac{1}{k} \operatorname{osc}\left(\psi, I_{k n}\right) \leqslant \frac{1}{n} \operatorname{var}(\psi,[0, \pi])+\frac{8}{n} \sum_{k=1}^{n} \operatorname{var}\left(\psi, J_{k}\right)
$$

This proves (3.1).
We note that in the case $n=2^{m}$ with some nonnegative integer m, the above proof provides a smaller constant, namely 5 instead of 9 .

4. Proofs

Proof of Theorem 1. By (1.3)-(1.5),

$$
\begin{aligned}
& \tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right) \\
& \quad=-\frac{1}{\pi} \int_{0}^{\pi / n} \psi_{x}(t) \tilde{D}_{n}(t) d t+\frac{1}{\pi} \int_{\pi / n}^{\pi} \psi_{x}(t) \frac{\cos (n+1 / 2) t}{2 \sin t / 2} d t
\end{aligned}
$$

$$
\begin{align*}
= & -\frac{1}{\pi} \int_{0}^{\pi / n} \psi_{x}(t) \tilde{D}_{n}(t) d t+\frac{1}{\pi} \sum_{k=2}^{n} \int_{I_{k n}}\left[\psi_{x}(t)-\psi_{x}\left(\theta_{k-1, n}\right)\right] \\
& \times \frac{\cos (n+1 / 2) t}{2 \sin t / 2} d t \\
& +\frac{1}{\pi} \sum_{k=2}^{n} \psi_{x}\left(\theta_{k-1, n}\right) \int_{I_{k n}} \frac{\cos (n+1 / 2) t}{2 \sin t / 2} d t=: A_{n}+B_{n}+C_{n} \tag{4.1}
\end{align*}
$$

say. Since

$$
\left|\tilde{D}_{n}(t)\right| \leqslant n \quad \text { and } \quad \psi_{x}(0)=0
$$

we have

$$
\begin{equation*}
\left|A_{n}\right| \leqslant \operatorname{osc}\left(\psi_{x}, I_{1 n}\right) \tag{4.2}
\end{equation*}
$$

Making use of the obvious estimate

$$
\left|\frac{\cos (n+1 / 2) t}{2 \sin t / 2}\right| \leqslant \frac{\pi}{2 t}, \quad 0<t \leqslant \pi
$$

we find

$$
\begin{align*}
\left|B_{n}\right| & \leqslant \frac{1}{\pi} \sum_{k=2}^{n} \operatorname{osc}\left(\psi_{x}, I_{k n}\right) \int_{I_{k n}} \frac{\pi}{2 t} d t \\
& \leqslant \frac{1}{2} \sum_{k=2}^{n} \frac{1}{k-1} \operatorname{osc}\left(\psi_{x}, I_{k n}\right) \\
& \leqslant \sum_{k=2}^{n} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, I_{k n}\right) \tag{4.3}
\end{align*}
$$

Setting

$$
R_{k n}:=\int_{\theta_{k n}}^{\pi} \frac{\cos (n+1 / 2) t}{2 \sin t / 2} d t, \quad k=1,2, \ldots, n
$$

by Lemma 1 ,

$$
\left|R_{k n}\right| \leqslant \frac{\pi}{(n+1 / 2) \theta_{k n}}<\frac{1}{k}, \quad R_{n n}=0
$$

640/81/2-5

By summation by parts,

$$
\begin{aligned}
C_{n} & :=\frac{1}{\pi} \sum_{k=2}^{n} \psi_{x}\left(\theta_{k-1, n}\right)\left(R_{k-1, n}-R_{k n}\right) \\
& =\frac{1}{\pi} \sum_{k=1}^{n-1}\left[\psi_{x}\left(\theta_{k n}\right)-\psi_{x}\left(\theta_{k+1, n}\right)\right] R_{k n}
\end{aligned}
$$

whence

$$
\begin{equation*}
\left|C_{n}\right| \leqslant \frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k} \operatorname{osc}\left(\psi_{r}, I_{k n}\right) \tag{4.4}
\end{equation*}
$$

Combining (4.1)-(4.4) gives (2.1).
Proof of Theorem 2. If

$$
\frac{\pi}{n+1}<h \leqslant \frac{\pi}{n}, \quad n \geqslant 1
$$

then

$$
\begin{aligned}
\left|\tilde{f}(x, h)-\tilde{f}\left(x, \frac{\pi}{n+1}\right)\right| & \leqslant \frac{1}{\pi} \int_{\pi / n+1}^{\pi / n} \frac{\left|\psi_{x}(t)\right|}{2 \tan t / 2} d t \\
& \leqslant \frac{1}{n \pi} \operatorname{osc}\left(\psi_{x}, J_{n}\right)
\end{aligned}
$$

Analogously, for such h we have

$$
\begin{aligned}
|\tilde{f}(x, h)-\tilde{f}(x)| \leqslant & \left|\tilde{f}(x, h)-\tilde{f}\left(x, \frac{\pi}{n+1}\right)\right| \\
& +\sum_{k=n+1}^{\infty}\left|\tilde{f}\left(x, \frac{\pi}{k}\right)-\tilde{f}\left(x, \frac{\pi}{n+1}\right)\right| \\
& \leqslant \frac{1}{\pi} \sum_{k=n}^{\infty} \frac{1}{k} \operatorname{osc}\left(\psi_{x}, J_{k}\right)
\end{aligned}
$$

In particular, this is true when $h:=\pi / n$.
Now, Theorem 2 follows from Theorem 1 and (2.2).
Proof of Theorem 3. Inequality (2.8) is an immediate consequence of Theorem 1 and Lemma 2.

5. Covergence in L^{1}-Norm

Imitating the proofs of Theorems 1 and 2, we may obtain the following quantitative versions of the Young test in L^{1}-norm.

Theorem 1*. If f is integrable on $[-\pi, \pi]$, then

$$
\int_{-\pi}^{\pi}\left|\tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right)\right| d x \leqslant\left(1+\frac{1}{\pi}\right) \sum_{k=1}^{n} \frac{1}{k} \Omega\left(\psi, I_{k n}\right), \quad n \geqslant 1
$$

where

$$
\Omega(\psi, I):=\sup \left\{\int_{-\pi}^{\pi}\left|\psi_{x}(t)-\psi_{x}\left(t^{\prime}\right)\right| d x: t, t^{\prime} \in I\right\}
$$

Theorem 2*. If f is integrable on $[-\pi, \pi]$ and such that

$$
\sum_{k=1}^{\infty} \frac{1}{k} \Omega\left(\psi, J_{k}\right)<\infty
$$

then \tilde{f} is also Lebesgue integable and

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|\tilde{s}_{n}(f, x)-\tilde{f}(x)\right| d x \leqslant & \left(1+\frac{1}{\pi}\right) \sum_{k=1}^{n} \frac{1}{k} \Omega\left(\psi, I_{k n}\right) \\
& +\frac{1}{\pi} \sum_{k=n}^{\infty} \frac{1}{k} \Omega\left(\psi, J_{k}\right), \quad n \geqslant 1 .
\end{aligned}
$$

It is plain that

$$
\Omega\left(\psi, I_{k n}\right) \leqslant 2 \omega_{1}\left(f, \frac{\pi}{n}\right)
$$

where

$$
\omega_{1}(f, \delta):=\sup \left\{\int_{-\pi}^{\pi}|f(x+t)-f(x)| d x:|t| \leqslant \delta\right\}
$$

is the integral modulus of continuity of f.
Now, the conjugate versions of the Dini-Lipschitz test in L^{1}-norm reads as follows.

Corollary 1*. If f is integrable on $[-\pi, \pi]$, then

$$
\int_{-\pi}^{\pi}\left|\tilde{s}_{n}(f, x)-\tilde{f}\left(x, \frac{\pi}{n}\right)\right| d x \leqslant C \omega_{1}\left(f, \frac{\pi}{n}\right) \ln (n+1), \quad n \geqslant 1
$$

Corollary 2*. If f is integrable on $[-\pi, \pi]$ and such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \omega_{1}\left(f, \frac{\pi}{k}\right)<\infty, \tag{5.1}
\end{equation*}
$$

then \tilde{f} is also Lebesgue integrable and

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|\tilde{s}_{n}(f, x)-\tilde{f}(x)\right| d x \leqslant & C \omega_{1}\left(f, \frac{\pi}{n}\right) \ln (n+1) \\
& +\frac{1}{\pi} \sum_{k=n}^{\infty} \frac{1}{k} \omega_{1}\left(f, \frac{\pi}{k}\right), \quad n \geqslant 1 .
\end{aligned}
$$

Clearly, (5.1) is equivalent to the condition

$$
\int_{0}^{\pi} \frac{\omega_{1}(f, \delta)}{\delta} d \delta<\infty
$$

Problem. Is condition (5.1) the best possible in the following sense: Given a concave modulus of continuity $\omega(\delta)$ such that condition (2.7) is satisfied, does there exist an integrable function f such that

$$
\omega_{1}(f, \delta) \leqslant C \omega(\delta), \quad \delta \geqslant 0
$$

but \tilde{f} is not Lebesgue integrable, or at least, the conjugate series (1.2) does not converge to \bar{f} in the L-norm?

Acknowledgment

The author is grateful to Professor V. Totik who pointed out that condition (2.5) is the best possible.

References

1. R. Bojanic, An estimate of the rate of convergence for Fourier series of functions of bounded variation, Publ. Inst. Math. (Beograd) (N.S.) 26, No. 40 (1979), 57-60.
2. R. Bojanic and D. Waterman, On the rate of convergence of Fourier series of functions of generalized bounded variation, Akad. Nauka Umjet. Boshe Hercegov. Rad. Odjelj. Prirod. Mat. Nauka 22 (1983), 5-11.
3. S. M. Mazhar and A. Al-Budaiwi, An estimate of the rate of convergence of the conjugate Fourier series of functions of bounded variation, Acta Math. Hungar. 49 (1987), 377-380.
4. V. Totik, On the strong approximation of Fourier series, Acta Mah. Acad. Sci. Hungar. 35 (1980), 151 172.
5. W. H. Young, Konvergenzbedingungen für die verwandte Reihe eine Fourierschen Reihe, Münchener Sitzungsberichte 41 (1911), 361-371.
6. A. Zygmund, "Trigonometric Series," Vol. 1, Cambridge Univ. Press, Cambridge, 1959.

[^0]: * This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant 234.

